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ABSTRACT

In this paper, the so-called triggered emissions of whistlers are
considered. The effects of a nonlinear interaction between a whistler
wave and the particles resonating with it are considered in some detail.
The interaction gives rise to two closely related effects, namely a
change in the amplification or absorption by the plasma, and a phase-
bunching of the resonant and near-resonant particles, giving rise to a
current. The current due to the phase-bunched particles has roughly
the same structure (frequency and wave number) as the wave causing it,
and will therefore give rise to emission of a new whistler wave, acting
like an antenna. The possibility of having a self-sustained process of
phase-bunching and emission is investigated. The structure of a region
where this process can take place is proposed, and the corresponding con-

ditions that have to be met are stated.
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1. INTRODUCTION

Since the discovery of the so-called triggered emissions (TE) of
whistlers in the magnetosphere, a number of suggestions and theories have
been put forward to explain the phenomenon (see Helliwell [1,2,3] and the
list of references given there). The complexity of the problem can be
appreciated from the following list of characteristics, none of which
seems to be irrelevant: (a) TE are a non-stationary, or transient
phenomenon, (b) the inhomogeneity along the direction of propagation
plays an important role, in particular for the frequency variation of
the TE (see [1,2]), and (c) TE are basically due to some nonlinear
process. This 1s readily deduced from the fact that the frequency of the
TE can differ considerably from that of the triggering signal.

As is fairly evident from the list above, a complete mathematical
treatment, taking into account all the relevant features, is a hopeless
task. The most recent theories that have been put forward [l,h,S], have
concentrated their effort on finding the nonlinear mechanism underlying
the TE . There seems to be general agreement that the mechanism re-
sponsible is a nonlinear wave-particle interaction. The nonlinear effects
available can crudely be categorized into (a) wave-wave interactions, and
(b) wave-particle interactions. The first category consists of interac-
tions between three or more waves, resulting in a redistribution of the
wave energies. These interactions and their feasibility to produce TE
have been considered by Harker and Crawford [6]. A typical result from

their calculation is that a typical length scale, { for the transfer

P
of energy from a pump wave to two other waves is 1/1-l ~ kBW/BO , Where
k is the wave number; BW is the magnetic field of the pumping whistler
wave, and BO is the earth's magnetic field.

The second category consists of the nonlinear interaction between a
finite amplitude wave train, and the particles that happen to be in
resonance with it. The resonant particles are the ones that see the
electric and magnetic field vectors of the wave rotate at the local
gyrofrequency. Thus the doppler-shifted frequency, o - v-k , seen by
these particles equals the gyrofrequency, { , where  1s the wave

frequency, and v is the particle velocity. Taking the whistler wave



to propagate along the static magnetic field, and recollecting that w <0

for the whistler mode, one has the resonance condition w + v”k =0 ,

which we may write as

V| o= v, = p (1)

where V” is the velocity component along the static magnetic field. It
should be noted that the resonant particles move in the opposite direc-
tion to the wave.

The interaction between the wave and the particles resonating with
it, results in a distortion of the particle velocity distribution function
near the resonance velocity. This in turn leads to a change in the absorp-
tion or amplification properties. It also leads to a certain amount of

phase bunching of the resonant particles. A typical length scale, [

for these processes to take place is of order l//z2 ~ k(BW/BO)l/2 . 2In_
serting B, ~ 1072 ¢ , and B~ 1077 - 108 ¢ one arrives at

l/kz2 ~ 3 x 1072 21073 . The corresponding figures for the wave-

wave interactions are l/kll ~ 1077 - 10 , which are too small to

give any significant effect. For the wave-particle interaction, however,
the length Ly is sufficiently small to be of interest in the present
problem.

In this paper we will work roughly along the lines suggested by
Helliwell [1], trying to calculate the effect of the wave-particle inter-
action, and investigating the possibility of having a self-sustained
process giving rise to the observed emission. The plan of the paper
is as follows.

In Section 2, the interaction between an electron and a whistler
wave in the magnetosphere is considered. In particular, we investigate
the effect of the inhomogeneity of the earth's magnetic field.

In Section 3, the collective interaction of the resonant particles
with the wave is investigated. TFirst, the linear case is considered,
for the sake of completeness. This case has been deglt with previously
by Liemohn [7], and Lee et al. [8]. Then the nonlinear damping or
growth resulting from the nonlinear interaction between the whistler

wave and the resonant, and near-resonant particles, is investigated.
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Recently this has also been investigated by Palmadesso et al. [9] using
a slightly different approach. An application of our findings is made
to some experimental observations published by McNeill [10].

In Section 4, the phase-bunching of the resonant electrons due to
the whistler wave is investigated, and it is shown that this effect is
closely related to the nonlinear damping (or growth) effect. This effect
was suggested by Helliwell [1] to be responsible for the observed emissions.

In Section 5 the emission from the phase-bunched particles is dis-
cussed., The possibility of having a self-sustained process, where the
emitted wave phase-bunches new particles, which subseguently give new
emission, is discussed. The structure of a region where this self-
sustained process might take place is described, and the corresponding
requirement on the frequency variation of the emitted whistler is dis-

cussed.



2. NONLINEAR INTERACTION BETWEEN AN ELECTRON AND
A WHISTLER WAVE IN THE MAGNETOSPHERE

Consider an electron of charge e , and mass m , moving in the
earth's magnetic field B , in the presence of a circularly-polarized
fcos

w ol
(wt - [ xdz) , sin (ot - [ kdz) , Of be the magnetic field vector of

whistler mode (WM) signal propagating along B . Let EW =B
the WM wave, where 2z is the coordinate along the static magnetic
field, B , and k 1s the wave number. TIts relation to the frequency,
w , is given by the cold plasma dispersion relation

® © 1/2
kz_z( ) (2)
c O -w

Here c¢ is the speed of light, wp and ( are the electron plasma

2 .
frequency and gyrofrequency, respectively. The fact that (wp/Q) °> 1
in the domain of interest for the present paper has been taken into
account to reduce the dispersion relation to this form.

The equations of motion are

v 3B viv OB
. . L . . L
o= vasin¥+— — | ¥ = - (v” + w/k)a sin ¥ - —
I 2B 9z 2B Oz
o = Q- [(v” + w/k) /v, Ja cos ¥ , (3)
where the velocity of the electron is v = {Vlcos ®, v, gin @ , - v“; 5

and ¥ =¢ + [ kdz - ot + 1 is the angle between - B, end v, . The
last term in each of the first two equations comes from the lowest order
guliding centre approximation for an electron in an inhomogeneous magnetic
field. The quantity a = eBw/mc is the gyrofrequency corresponding to
the wave magnetic field.

Neglecting terms of relative order of magnitude (a/Q)l/2(<< 1)
the following equations are readlily deduced from Eq. (3),

d w

= [vﬁ + vf] = -fv,asin¥ s

(Continued)
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d ® o wvfag ) w\1l ok
” (Vn‘“") Y Bl (‘fn*‘)‘*
at k k 20 Oz kY k/k Oz

k [ifo - (vf/zg)%%} + k(v - v“) , (W)

Y o+ E? gsin ¥

Il

where 52 = a kv, . For particles near resonance, Eq. (4) reduces to
d 2. w .
= [v“ +v,] = -fv, asiny¥ s (5a)
2

d w 5 o fOw vi 100
— V”—l--—- +V_L = -—(-—5 ——)——-—- 5 (5b)

dt k k \k 2 Q oz
P57 siny - k |V - (V) & (5¢)
®~ sin = o - v,/ S, s Sc

where in Eq. (5b) the so-called gyrofrequency model for the variation of
the electron density (see Helliwell [3]) has been used. In this model,

the density is proportional to the static magnetic field.

2.1 Homogeneous Case

Near the equator, where the variation in the earth's magnetic field
is very small, it makes sense to neglect the right-hand sides of Egs. (5b)
and (5¢). These two equations are then easily integrated once to give the

following integrals of motion

2 >2

]

a
-2 v, cos ¥ . (6)

- - ("u’“%)g“’i =T
From these two integrals, it is readily seen that electrons near
resonance -can be phase-trapped by the Wave, in the sense that Y is
confined to a region inside the interval (- =m,n) . This is demonstrated
by the phase diagram of Fig. 1, where curves of constant u and X are
plotted in a v“ - ¥ plane. Later it will be found more convenient to

use the coordinate =z as independent variable instead of time t .
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Making this transformation of variable, and again neglecting terms of
2
relative order of magnitude (a/Q)l/ , one obtains from Eq. (5c¢)

dEW

———2- +_ K sin Y = 0 3 (7)
dz

2 -2, 2
where K = O VI

_K2 = k252/(n - w)lg .

Equation (7) is analogous to the equation of motion of a pendulum

For resonant and near-resonant particles,

suspended in a gravity field, and shows that the relative phase angle

Y between y, and - Ew oscillates around the equilibrium position
¥ =0 . The period for small deviations from this equilibrium is
2n/k . The solution of Eq. (7) in terms of elliptic functions is

given in the Appendix.

2.2 Inhomogeneous Case

When the particle moves farther away from the equator, the inhomo-
geneity of the earth's magnetic field can no longer be neglected, and
the full equations (5a)-(5c) must be considered.

The "pendulum” equation (5c) now has an additional force, cor-
responding to the right-hand side of the equation, which is proportional
to the difference in acceleration between an imaginary particle moving

with the resonance velocity V. , and an electron in the absence of a

0
wave field. As long as the magnitude of this force does not exceed 52 s
the electron may still be phase-trapped in the wave. Thus trapping is

only possible if the condition

2
) vo oo
F > ok vo-—i—— (8)
20 Oz ‘

is satisfied. Using the gyrofrequency model for the density variation,

the condition above takes the form

, (9)

» Q- 2 ; on
20 20

-2
> 2
w» (l + + tan o VO Sz

where « is the pitch angle of the particle velocity (tan a = VL/VH) .



In the following, it is shown that condition (9) can only be satis-
fied over a relatively small region around the equator. TFor this region
the formula

o - [1ed @) 10)

gives a good approximation to the dipole field, where R is the distance
from the center of the earth. Using this formula, together with the in-
equality (9), one obtains

-1
2naR W Q-w 2
< — —
<9Qo}‘) tan o (J_ + o t o ten oc) (11)

z

R

Using data relevant to TE experiments [1,2]; R ~ BRO , Where

RO is the radius of the earth, A ~2km , B ~ 1.2 x 10—2 G
w ~ QO/2 , and assuming o ~ 45° and B ~ 1077 - 1078 G , one obtains
L~ 0.2k R, - 0.024 R, for the length of the interaction region. The

, and

corresponding length for the phase oscillation becomes ﬂB ~ 0.06 RO -
0.2 Ry , vhere fp = 2n/k . Comparing the figures for £, and I
it will be seen that a field strength of 10_8 G is too small to give

any nonlinear effects. For fields of about 1077 ¢ , L, and [, be-

come of the same order of magnitude. At lO"7 G , we have ﬂc ~ MIB .

The case where lc and ﬂB are of the same orde%f?f magnitude will be
referred to as the low field case. When BW ~ 10 ° G , one finds that
Zc ~ lO2 lB .  The situation when Zc > zB is henceforth referred to
as the high field case.

In the high field case, the length scale of the phase oscillations
becomes much smaller than the scale length of the inhomogeneity. It is
therefore appropriate to look for an adiabatic invariant corresponding
to the phase oscillations. The existence of such an adiabatic invariant
has already been pointed out by Laird and Knox [11], who did not, however,
calculate it in any detail. A calculation can be done rather easily,

following an approach similar to thelrs.



One defines a Hamiltonian given by

m_ , &
H = — (v” - VO) + 1, —s (1L - cos ¥) (12)
2 k
From this Hemiltonian, defining the momentum p = m,(v” - VO) , one
e
obtains the equations of motion
. OH . OH
Z_VII—VO_BE’IJ_SE (13)

Classical mechanics then asserts the existence of an adiabatic invariant,

J , given by [12]

m
J =j£pdz=——f—j[(vn—vo) ay , (1)

when the parameters (VO , kK, 5) are varying slowly. The integrals
above, which are evaluated along a closed loop in phase space for
H = const. , are readily calculated to be
2
H |E(n) - (1-n7) K()
J = 8: ) ’ <l5)
w n

vwhere E(n) and K(n) are the complete elliptic integrals of the second

and first kind respectively, and n is defined in the Appendix to be
1/2 /
2 2

1 Xk
n = <—+ —5 5 (16)
2 Lo

and X is given by Eq. (6). The particles are trapped only when

n <1 . For particles trapped near the 'bottom of the well’ (n=0),
one obtains the following expression for J , using asymptotic expres-

sions for E and X ,

H gl
J = 2x - (l+—-—+...) (17)
8

The first term of this expression is the adiabatic invariant of a har-
monic oscillator of frequency ® and energy H , which is in good

agreement with what one would expect for those particles.



2.3 Energy Exchange

The energy exchange between the wave and a trapped particle depends
on the relative phase angle Y , as can be seen from (5a). In the homo-
geneous case, Y oscillates around Y = 0 where the energy exchange is
zero, Thus the electron energy will oscillate with a period of the order
of 2n/w

In the inhomogeneous case, however, ¥ = O 1is no longer an equil-
ibrium value for the phase angle. The equilibrium value, YO , for

which ¥ = O is now given by

k . 5 on
sin Yo = = |V, - (Vl/2Q> —— (18)
w oz

If the right-hand side of Egq. (18) varies sufficiently slowly, the rela-
tive phase angle of a trapped electron will oscillate around this new
equilibrium value for ¥ , with a period that for small oscillations is
slightly longer than in the homogeneous case, namely 2nﬂ5(cos Yo)l/g

For electrons staying near this new equilibrium position, which can be
considered as the centre of gravity of the distribution of trapped elec-
trons, the rate of energy transfer can be obtained from Egs. (5a) and (18)

to be

.%E [vﬁ + vf] = - % [VO - (vf/EQ) %%] . (19)

Equation (19) now shows an increase of energy when Vb - (vf/EQ) onfoz <0,
i.e., when the particle travels towards the equator, and a corresponding
decrease when the particle moves away from the equator.

As these results only concern particles very near exact resonance,
no conclusion can be drawn for the overall damping or amplification of

a WM wave.
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3. WHISTLER AMPLIFICATION (OR DAMPING)

In this section, whistler amplification and damping in the magneto-
sphere are considered. Liemohn [7], and Lee et al. [8], have dealt with
this question in considerable detail within the limits of linear theory.
For the sake of completeness, this linear theory will be considered

briefly here.

3.1 Linear Theory

In the following, a similar approach to that in Ref. [7] is fol-
lowed. We shall, however, consider a class of distribution functions
that is somewhat different from those considered by Liemohn. The par-
ticle distribution functions that he deals with are apparently not
equilibrium distributions, in the sense that they depend on the kinetic
energy, E , and the magnetic moment, u , as well as the coordinate
along a field line. Now an equilibriﬁm distribution does not depend on
the coordinate along a field line, and in the following we shall choose
a class of functions meeting that requirement.

It 1s assumed that the electron population consists mainly of a
low temperature thermal distribution, £, , plus a small nonthermal

0]

tall of energetic electrons, 6fo

f = fO + afo . (20)
Linearizing the Vlasov equation, and using Maxwell's equations assuming
solutions varying as exp [i(wt - f kdz) - f kidz] , where again the
z-axis 1s along the magnetic field, one arrives at the following expres-
sion for k, for the WM (see Ref. [7])

ki 1 . 2 oo
;‘ = ; (“;E) U/\ ESfO] Vfdvl s (21)
c 0 V“=VO

where [8f,] has been written for [via/av” - (VH + w/k) a/Bvi]‘Sfo s
and advantage has been taken of the assumption that Sfo < fo , Wwhich
implies ki <<k . Further, we have used the fact that the parameters

are not varying significantly over a wavelength, i.e., k >> (3B/dz)/B

11



Assuming now the simple class of nonthermal distribution functions

n
81

5f., = Const X ——————m s (22)
0 (E + E,)"
where p =Inévi/2B is the magnetic moment, E 1s the kinetic energy,
and EO is a constant related to the mean kinetic energy of the non-
thermal distribution. In terms of vi and V” , Eq. (22) can be
written as

(pv®)™

L

Favyrwt )
where A 1s a constant chosen such that the integral [ 6fo v,
evaluated at the equator, is equal to the ratio between the densities
of the nonthermal and the thermal electrons. The quantity B = QO/Q s
where QO is the gyrofrequency at the equator, at the field line
considered.

Substituting Eq. (23) into Eq. (21) one obtains

k. w» -n-N (Eii - Q)
i n )
;— = S(m:n><é;') ((%)n-N (% ] ]_)3N s (2k)

where N =(m-n-2)/2 , and S(m,n) is a posifive dimensionless con-
stant dependingon n , m , A , and the values of wp and Q at the

equator. For lower altitudes, where Q > w , one has

k.

3-m
.__:.L. A S(m’n) m-n—N (%) (25)
k

It is seen from Eq. (24) that amplification occurs when

g > nil (26)
@ n

When Qoﬁw is somewhat smaller than 1 + 1/n , Eq. (24) implies that

the region around the equator will absorb WM wave energy.

12



The variation of ki/[kos(m,n)] , where k. 1is the wave number at

the equator, has been plotted in Fig. 2 as a fugction of geometric lati-
tude for two sets of values of m and n

From the previous section, it is evident that nonlinear wave-particle
interaction with a monochromatic wave can only take place in a relatively
narrow region around the magnetic equator. For a certain frequency band,
w >'Qon/(n+l) , the linear theory predicts a transition from amplifica-
tion to damping in the equatorial region. Consequently, for this fre-
quency band, any change that the nonlinear wave-particle interaction
might produce in the damping or growth of these waves may be significant.
In the following, therefore, the nonlinear correction to the damping (or

growth) near the equator will be investigated.

3.2 DNonlinear Theory

In the following, the effect of the nonlinear wave-particle interac-
tion on the damping (or growth) of the WM wave is considered. The ef-
fect on one electron was discussed in Section 2, and it was pointed out
that particles near or at the resonant velocity, Vqy , were 'phase-trapped’
in the WM wave. Due to this interaction, the electron velocity distribu-
tion is changing near the resonant veloecity, and consequently the rate of
absorption (or amplification) of the WM wave changes.

The region A (see Fig. 3b) where the nonlinear interaction can take
place has a length EC that was estimated in Section 2 . According to
the figures given in that section, A is a fairly narrow region around
the equatorial plane of the field line considered. It appears from the
previous discussion that two rather different cases should be taken into
account, namely the low field case, where ﬂB ~ ZC , and the high field
case, where L, >> Iy - In the following, the low field case is con-
sidered.

In this case ﬂB and. lc are both smaller than the lengths of wave
trains corresponding to a Morse dot [0.25 RO (~ 50 ms)] and a dash [0.75 RO
(~ 150 ms)] . Further, it is possible tc show that the acceleration of the
wave and the particles due to the inhomogeneity of the field is not of much
importance within most of the region A , and can be neglected. In this

case, therefore, it makes sense to use a homogeneous model (see Fig. 3a)

13
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where the wave train occupies the interaction region, moving from the
left to the right, and the particles are streaming in from the right

(z >0) . In this model, the electrons to the right of A are unper-
turbed, and their distribution function can be taken as that given by
Egs. (20) and (23). As the electrons are streaming through A those

at or near resonance, belonging of course to the nonthermal tail of the

5

distribution, are interacting with the WM wave. The electron velocity

0
distribution function can be considered a function of u [given by Eg.

distribution function will consequently be changing through A , for
velocities near V, = (Q-w)/k
Introducing the variable w = vu - V. , the unperturbed nonthermal

(6)] and w only, and can be expanded near w = O in the form

aafo

ow

Wt oL (27)
0

Because SfO can be assumed to vary only insignificantly for small

SfO(u,w) = afo(u,o) +

values of w , the first two terms in the expansion of Eg. (27) will
give sufficient accuracy to this region. For the perturbed distribution
(for z <0 ), an expansion like Eq. (27) does not make sense because
the WM wave will impose a fine structure on the particle distribution
for small w .

To evaluate the perturbed distribution, &f , Liouville's theorem

is applied, which states that

8f(y,z) = &f,lu,w,(v,2)] , (28)

where Vo is the unperturbed value of w for z 2> 0 , and advantage
has been taken of the fact that u is an integral of the motion. Using

Eqs. (27) and (28), one obtains

o8f

of(v,z) = Sfo(u,O) + wo(z,z) (29)

ow o
To obtain the nonlinear growth (or damping), a method similar to that
applied by 0'Neill [13] to the problem of nonlinear damping of Langmuir

waves, may be applied. This method is not self-consistent, in the sense

16



that the perturbed particle trajectories are calculated on the assumption
that the wave amplitude is constant, which it is not, of course, in the
presence of amplification or damping. Although crude, the method has
shown good qualitative agreement with experiment [14], and will be ap-
plied with some confidence in the following.

Invoking the conservation of energy, and assuming a steady state,

we have

S T3 8—(Ew+Bw) = 0 ’ (30)

7

3 D [1 > 2 ]

where T represents the kinetic energy of the particles. Defining the
coefficient of damping (or growth), k; ,as k, =- (BBW/BZ)/BW , and
taking advantage of the fact that the equivalent permittivity e 2> 1

for the case of interest here (because wp >0 ), we obtain

o
® 5 o
k, = —=k= — [ v 5f dy (31)
i 22 ps
2c"a” Oz

To evaluate the above integral, the expression for Bf [Eq. (29)]

is applied, together with the expressions for w, [Egs. (A.5) and (A.6)]

0
derived in the Appendix. Applying the result wo(w,w) = - Wo(-w,-Y) ,
which is most readily deduced from Fig. 1, one obtains
B, oi(0mw) D a8,
= = _g_§7§_ _— W W, dv (32)
k ck a dz ow

0
The integral in Eq. (32) is conveniently broken up into two parts:
one for the trapped particles, and one for the nearly trapped particles.

For the trapped particles, the variables of integration n , v, , and

L
¢ (see the Appendix) are introduced, giving the term

2 0o
> Jomla) o 00n, | fl 5 [ cos(&/2)enlP(£/2,n)-kz,1]dt
e v, —= v N dn Jf
oz 2kta, 5 T ow 0 LO e (1 - n2 Sin(E/E)]l/g

(33)

17



For the nearly trapped particles, the variables of integration n , v
L

and Y are more convenient. One obtains

3 Veulw) £, dsf, S
NS PO Y S
Z c a 0 W 0 1 bl

(3k)

Adding the expressions (33) and (3L4); differentiating, and meking the
substitutions 1 —» 1/ and Y & in Eq. (34), gives

1 1t
clv-L ;/\ dn b/\ H(n,g,K'z) dé
0 0 -7

[

2 2
k, i T W L/NVB 86fo
dw

by
no
Q

o

n + - F - =2z, F - -
o [1 - n2 sin2(§/2)11/2 n3 n M

fan
i
|

16 3 cos(t/2)sn[F-k z,n]dn[F- kz,7] 1 K K
sn[ }cn[

(35)
where F = F(t/2,n)

Applying asymptotic expressions for the Jacobi elliptic function,

and performing the 7 and £ integrations, one obtains

1 1T
lim_ \/\dn U/TH de = 1 s (36)
z— o x

and the expression left for ki ig readily identified as the rate of

damping (or growth), k? , derived from the linear theory, noting that

agfo
-

L dw

[f,] (37)
Yo

0
The dependence of H on v only enters through « , which can be

written in terms of the pitch angle, « , as

kK = k [a tan a/(Q-w)]l/2 (38)
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Finally one obtains ki in the form

n/2

k. = kI; f g(a) fldn fﬂHd&, dor , (39)
0 -7

0
where the form of g(a) is found from Eq. (23) to be

)2n+l

x (sin o , and the constant is chosen such that

\

The result of a numerical integration of Eq. (39) for
n=1/2 is given in Fig. 4(a), which displays ki/ki
of the argument - kz[a/(Q—w)]l/2 . The interaction

negative z-axis starting at z =0

3.3 Discussion

)E(m-n)—j

const. x (cos @

(40)

m=1U4 and
as a function

region is on the

It is clear from the previous two sections, that along most of the

path of the WM wave, except in a fairly narrow region around the equator,

the question of amplification or absorption is adequately answered by the

linear theory. This theory predicts for a rather wide class of electron

distribution functions, that the main amplification or absorption (see

Fig. 2) occurs on the upper part of the field line (- 25° < ¢ < 25°) .

For frequencies « such that

n
n + 1 QO J

the WM wave is damped on the top of the field line.

In the nonlinear

interaction region A , however, the damping is changed as indicated

in Fig. h(a), except for the front region of the wave train which moves

through A according to the linear theory.

So far, it has been assumed that the electron velocity distribution

to the right of A 1is undisturbed. This seems to be a reasonable assump-

tion when one considers wave trains of short duration.

If, however, a

steady state WM wave ('key-down') is applied, one must take into account

that the electrons interacting with the WM wave are reflected in the

mirror field of the earth, and after one complete bounce period again

enter the interaction region from the right. If these particles have
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not in the meantime been scattered by magnetospheric disturbances other
than the WM wave, they will interact with the wave again repeatedly.
The phage angle relative to the WM wave on successive arrivals at A
will be different, however. This will eventually lead to a complete
'stirring' of the electron velocity distribution near the resonance
velocity, resulting in a new equilibrium where the WM wave and the
plasma do not exchange energy. In the homogeneous case, this corres-
ponds to an equilibrium where the distribution function, &f , is a
function of u [given by Eq. (6)] only, in the neighborhood of the
resonance velocity [(Bf/Bw)IO = 0] . For such a distribution func-
tion, the damping (or amplification) vanishes.

An experimental result supporting these conclusions has been re-
ported by McNeill [10]. He received signals from NPG Seattle on 18.6
kHz at Lower Hutt, New Zealand, corresponding to whistler mode propa-
gation to an altitude of 2.4 RO . The transmitter had a one-hour cycle
of 50 min Morse transmission followed by a 5 min silent period (*key-up')
and finally a 5 min key-down transmission.

It was observed that after a key-down period the Morse signals some-
times came through with a power of the order of 10 dB above the power of
the Morse signals immediately preceding the key-up, key-down periods. A
typical decay time for this enhancement was estimated by McNeill to be
approximately 50 min . ,

Now, a key-down period of 5 min should allow for something like 102
passages through A by a resonant electron, and thus provide time enough
for a new equilibrium to be approached. The increase in power of a trans-
mitted signal due to the new equilibrium is readily estimated to be
exp [2£c k?] , assuming that the linear theory predicts absorption at
the equator for the frequency supplied, so an increase of 10 dB would

correspond to zck? ~ 1/2 , which appears to be a reasonable figure.
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4, NONLINEAR PHASE-BUNCHING

In the following, the so-called nonlinear phase-bunching will be
considered. This effect has been discussed by Helliwell [1] as a pos-
sible source of TE , using a simplified model for the phase-trapped
electrons.

It is instructive to start with Helliwell's model, which consists
of electrons in exact resonance with a WM wave. Upon entering the
wave train, the particles are evenly distributed in phase. This is
shown in Fig. 5(a), where the resonant particles are distributed along
the Y-axis in the phase diagram between -x and =x . They all lie
within the trapping region, and are all in exact resonance (w = 0)
After having moved through the wave train for a quarter of a bunching
period, 2x/w , the distribution of the same particles in phase space
is shown in Fig. 5(b). It will be seen that nearly all the particles
are now located in a small interval around ¥ = O . Thus, the particles
that upon entering the wave train were evenly distributed in phase have
now become phase-bunched.

Consider next the more realistic model sketched in Fig. 5(c). The
electrons are again distributed evenly in phase. Instead of consisting
of only one beam with w =0 , they are now given a distribution,

f(w) , whose level lines are drawn as straight lines parallel to the
Y-axis, indicating that f(w) has a gradient. After a quarter of a
bunching period the phase diagram looks like that sketched in Fig. 5(d).
As will be seen from this figure, the phase-bunching is still there, even
if it is not as pronounced as in the previous case [Fig. 5(b)]. The
bunching is now roughly proportional to the gradient in f(w) . If
there were no gradient in f(w) initially the bunching would disappear
altogether.

The phase-bunching, and the nonlinear damping are of course closely
related. To see the relation, it should be pecinted out that if a pop-
ulation of trapped and nearly trapped electrons has become phase-bunched,
this implies that their distribution function, &f [see Eg. (29)], has

become a periodic function of ¥ = ¢ + kz - wt . This fact again implies

22



(a) “WulilLlnllllllllw
w
-1 T
(b)
w
A
//—_—\\
- ™ TT
(c)— ~— ; N
N 7
N —
| ———
W

Fig. 5. Phase diagram illustrating phase-bunching.
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that the particles near and at resonance give rise to a current j ,

given by

dv

v, (1)
0

aafo
i = e k/\ vof dv = e k/ﬁ v wo(z,z)
ow

where Eq. (29) has been used, and advantage has been taken of the fact
that the integral of the first term in Eq. (29) vanishes because
Sfo(u,o) is not a function of ¢ . Introducing Egs. (A.5) and (A.6)
in Eq. (41), and integrating, one finally obtains

i = -A[-sin (0t - kz) , cos (wt - kz) , 0] , (42)
where
0 l s
16 en.a O8T
A = 0 f V.% 0 dV.L fdn fG(n,z,g) dg s
k 5 ow o S e
and
G(n,2,£) = sin (£/2) {nB en [F(£/2,1) - «xz,n]
+ ———

1 dan [F(e/2,q) - (kz/q),n] cos (£/2) }
I~ [1 - oF sin® (£/2)7%/°

In the absence of resonant particles, the WM wave will propagate
with a constant amplitude, i.e., without amplification or absorption.

In that case, the current due to the wave is simply
(c/lbn) V x B = (ke/bx) B , (43)

where the displacement current, being of relative order of magnitude
(Q/wp)2 << 1 , has been neglected. In the presence of the resonant and

near-resonant particles the total current density in the plasma is given

by

(ke/brn) ) s (L)
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where -j is given by Egs. (41) and (42). One of Maxwell's equations
now gives

Vx3B, = kB + %ﬁ i , (45)

where the displacement current has again been neglected. Taking into
consideration that B = |§W[ is now a slowly-varying function of =z

one obtains
i = - ﬁ?kiBW [- sin (wt - kz) , cos (wt - kz) , 0] .  (46)
Comparing Eqs. (42) and (46) one obtains
A = (c¢/bn) kB (47)

One can consequently use the expression for A given by Eq. (L2) to
evaluate ki , a8 an alternative method.
To obtain the part of [ which results from the nonlinear bunching,

the linear limit QO of j must be subtracted. Denoting the current

due to the nonlinear bunching as iB , one has

g = A~ = (c/kn) (ki - kg) B, [- sin (wt - kz) , cos (wt - kz) , 0]
(48)
In Fig. 4(b) the quantity - jB/jO resulting from the computed value of
k, , is displayed as a function of the argument - kz[a/(Q—w)]l/2 .
Although the preceding calculations apply only to the low field
case, it 1s to be expected that they will also give a good indication
of what is happening in the high field case. In this case, £C >> lB s

implying that when the wave train occupies most of the interaction region,
the resonant particles traveling through it will experience several oscil-
lations in the relative phase angle ¥ . Due to variation of the fre-
quency of oscillation with pecsition in the trapping region, one expects

a 'smearing out' of the distribution to occur. This will eventually
result in the establishment of a new equilibrium, where the wave no

longer interacts with the nonthermal electron velocity distribution.
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Thus, the electron distribution upon leaving the wave train no longer
gives rise to amplification or damping, nor does it carry a current due
to phase-bunching. There are two exceptions, however, which should be
pointed out. They occur when the distance from the front of the wave
train to the entrance of the interaction region, or the distance from
the exit of the interaction region to the rear end of the wave train,

is approximately 2x/k . In these two cases, phase-bunching will occur.

It has been suggested by Sudan and Ott [5] that, due to the acceler-
ation effect, new particles will constantly be caught by the wave, thus
giving rise to a cumulative effect which should enhance the number of
particles taking part in the phase-bunching. This, however, does not
appear to be correct. Considering a phase diagram of the type given in
Fig. 1, and recalling from elementary mechanics that the motion on such
a phase plane is 'incompressible', it appears that the only way of
absorbing more particles into the trapping region, 1s to expand this
region. Such an expansion admittedly takes place as the wave travels
towards the equator, but the maximum area of the trapping region occurs
at the equator, where one has essentially homogeneity. Thus, it appears
that the acceleration effect decreases rather than increases the number
of trapped particles. '

Over a part of the interaction region where acceleration can be con-
sidered constant, Eq. (5c) can be integrated if we consider %> and the
right-hand side of the equation as constant. The corresponding phase
diagram is sketched in Fig. 6, illustrating the fact that there is no

flux of particles into the trapping region.
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5. EMISSION

It appears from the previous section that when the resonant particles
interact with a WM wave train over a length approximately given by 2/«
before they leave it, they carry a current QB . This current has a
structure, i.e., a frequency w and a wave number X . In the neigh-
borhood of the rear end of the wave train, « and k have the same
values as the frequency and wave number of the wave producing the cur-
rent (henceforth referred to as the 'triggering' wave).

As the particles get farther away from the triggering wave w , k ,
and the velocity v“ of the particles, are all varying slowly due to the
inhomogeneity of the earth's magnetic field. Also, a certain amount of
phase-mixing takes place, due to the fact that the current-carrying
particles have a certain width of distribution in v, and vH . A
characteristic length for the phase-mixing to take place can be estimated
to be 2n/k , in the absence of any phase-correlating effects.

Clearly, the current due to the phase-bunched particles will give
rise to the emission of a new WM wave. In fact the resonant particles
act like an antenna. The gain of this antenna will depend on its length,

or rather its 'coherence length', /[ i.e., the maximum length over

2
which a part of an emitted wave can stay in resonance with the current-
carrying particles.

A rough estimate of the amplitude of the emitted wave, BE , at the
front end of the antenna can be found using the wave equation, and Eq. (48)

for the current density. We have

By ~ kB s (49)
where the value of ki at the end of the triggering wave train is used.

: If no phase-correlating effects are present, a reasonable upper

bound on /{ seems to be 2nx/k . The emitted wave itself, however, will
have a certain phase-correlating effect. In order to explain the observed
emissions in experiments with artificially triggered emission, it appears
to be necessary to produce a self-sustained process in which the emitted
WM phase—bynches resonant particles which subsequently produce more

emission. In the following, this possibility is considered.
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Let E denote the region in which the self-sustained process of
phase-bunching and emission takes place. E 1is not necessarily a sta-
tionary domain. It may move relative to the equator. It will be assumed
that the linear theory predicts amplification within E for the frequency
band emitted. Consider the model of E sketched in Fig. 7. It is con-
venient to subdivide it into two sections which have been denoted the
phase-bunching section, and the antenna section. Through the first
section, the phase-bunching is growing, together with a change in the
amplification rate, ki , which is shown in the lower curve of Fig. 7.
The amplitude of the emission shown in Fig. 7 is growing from the rear
end of E . The variation in amplitude in the antenna section depends
rather critically upon the value of ki there. If ki varies as in-
dicated with the broken curve in Fig. 7, the gain from the antenna will
be seriously reduced. If, on the other hand, ki varies as indicated
by the solid curve, the growth in the antenna section will be approxi-
mately linear, as indicated. The reason why ki is shown tc vary in-
significantly over the antenna section is that the amplitude of the
emitted signal is still so small there that the bunching length is
greater than the 'length’' of the antenna, Ly - When, however, the
emitted wave reaches the phase-bunching section, the value of ki in-
creases (see also Fig. L to compare the variation of bunching with the
variation of ki ), and the growth from there on is exponential.

The effect that saturates the growth across the region E has al-
ready been indicated. If the amplitude gets too high, the bunching occurs
earlier, together with a transition of ki from amplification to damping.
Thus, in the antenna section, the emission becomes seriously limited by
demping, and the total growth is reduced. A rough estimate of the growth

through the region E gives the following approximate condition which

inJ/zA exp [fkidz] ~ 1 , (50)

where the integral is taken through the whole region E . Both in Egs.

must be satisfied

(49) and (50) it has been assumed that there is little or no damping

across the antenna section.
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So far it has been implicitly assumed that the emitted wave and the
resonant particles stay in resonance throughout E . If this is not so,
one is not going to get any significant gain from the antenna, nor can
the bunching be of any Iimportance as already discussed in Section 2. The
requirement that the emitted wave should stay in resonance with the re-
sonant particles throughout an extended region of space, has been pointed
out and discussed by previous authors (see Helliwell [1,2]). Analytically,
it can be stated by the equations

Q -w-kvy = O S (@ -w-kvy) = 0 (51)
I o at I ’
where d/dt denotes the rate of change experienced by a resonant particle.

It should be pointed out that it is not enough to have Eq. (51) satis-
fied for one particular resonant particle throughout E . Equation (51)
must be satisfled for all resonant particles within E . It should also
be noted that Eq. (51) implies that the right-hand side of Eq. (5¢) vanishes.
Thus, a nonlinear interaction of the type discussed in Sections 3 and L4 can
take place even if the inhomogeneity of the region E would not allow
these processes to take place for a wave of constant frequency. Since now
the frequency o can vary, an additional degree of freedom is introduced
such that,é the condition for trapping is no longer as restrictive as that
given in Eq. (8). Taking the variation of w into account Eq. (51) leads

to the equation

do  _ o o on
T =Yooz - A% (52)
where
A = v, (l+(-2—9-+925®tan2a)/(l+vo/vg) ,

and vg(w) is the group velocity corresponding to the frequency w .

In addition to Eq. (52) one has the equation

g% + vg(w) %ﬁ = 0 , (53)
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which states that as one moves along with the group velocity, v (w) |,
‘one sees a constant frequency . The equation (52) and (53) appear
to be incompatible in the general case. The variation of vg as a
function of z and w , can be considered small within the region

E . If it is neglected altogether, the solution of Eq. (53) is

w = ol(r) s (5k4)

where T =1t - z/vg

A dependence of w on T alone does not generally satisfy Eq. (52).
There is one notable exception, however, namely the case where the vari-
ation of A(0n/dz) vanishes, or is very small. In that case, an approxi-

mate solution to Egs. (52) and (53) is given by

) (55)

where « = A(3Q/dz)/(1 + Vo/vg) , and represents the rate of increase
(or decrease) of the frequency, and is assumed to be a small quantity.
If o were a constant, Eq. (55) would provide an exact solution to
Egs. (52) and (53). If this is not so, Eq. (55) will satisfy Egs. (52)
and (53) except for terms of order ag . Equation (55) predicts a
linear increase or decrease depending on whether the resonant particles
are streaming towards the equator or away from it, respectively. The
rate of increase of « 1s proportional to the distance of E from the

equator. If E 1is moving, a change in the rate of change of ®w results.
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6. DISCUSSION

In this paper, we have investigated some of the basic physical
effects that are believed to be responsible for the observed emissions
of whistlers in the magnetosphere. First, we considered the effects
of a nonlinear interaction between a WM wave and the particles re-
sonating with it. It was pointed out that the interaction has two
closely related effects, namely a variation of the amplification (or
absorption) of the WM wave, and a phase-bunching of the resonant and
near-resonant particles. The phase-bunching gives rise to a current
which, in the absence of inhomogeneities, has the same structure (fre-
gquency and wave number) as the wave causing it. In the presence of
inhomogeneities, the frequency and wave number of the current will vary
slowly. The structured current, acting like an antenna, will in turn
cause emigsion of a new whistler mode wave traveling in the same direc-
tion, and with nearly the same frequency and wave number (inhomogeneous
case) as the wave bunching the particles.

The possibility of having a self-sustained process was then in-
vestigated, and the structure of a region, E , in which such a process
can take place was proposed. We arrived at two conditions for the ex-
istence of such a region, namely Eg. (50) and Eq. (51), which have to be
satisfied throughout E . It appears that these conditions can be
gatisfied if the amplification predicted by the linear theory is suf-
ficiently strong. This question is currently under consideration for
typical magnetospheric conditions. In the proposed model, the initial
energy needed for the process to take place comes from the triggering
wave. The main energy feeding the process, however, comes from the

anisotropy in the distribution of the hot electrons.
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APPENDIX: SOLUTION OF THE PENDULUM EQUATION

In the following, the integration of the equation of motion for an
electron interacting with a WM wave is indicated. In Section 2, the
equation of motion (7) for the angle ¥ = ¢ + kz - wt + = , was derived.

Using the coordinate 2z as the independent variable, one obtains:

2
av
—s +K sin¥ = O , (A.1)
dz
2 =2,2 . 2 .
where K = /v . For trapped, and nearly trapped particles, « will

2

be approximated by E?kg/(0~w) Equation (A.1) is now readily inte-

grated once to produce:
2

1 4y 1 ¥
(_._—.) = K2n2 (l - - sin® — ) , (A.2)
2 dz 1 2

where n = [1/2 + nge/(hﬁg)]l/g , and X°  is given by Eq. (6) in Section 2.

For 1 < n2 , Eq. (A.2) is readily integrated to give

F(YO/E , 1/n) = F(¥/2, 1/n) - nkz , 1< n2 s (A.3)

where F dis an elliptic integral of the first kind.
For ng <1 , the substitution sin (¥/2) = n sin (£/2) makes it
possible to integrate Eq. (A.2) to give

2

F(&O/E,n> = F(E/E,n) -xkz , 1 <1 (A k)

We shall need the quantity w, , which is the unperturbed value of

0
w , where w 1is defined by:

W= v sV = %2 (@) (o - sin® (¥/2) 2
For n2 < 1 one obtains:

Wy = + 2 (w/k) n cn [F(&/2,n) - kz,n] , n2 <1 ,(A.5)
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and for ng > 1 one obtains:

Wy = %2 (w/k) nan [F(¥/2, 1/n) - w2z, 1/n] , oL, (.6)

where cn and dn are two of the Jacobl elliptic functions. Here only

the '+' sign is used in the determination of the square root in Eq. (A.6).
2

Thus wo/w >0 for 1 <49~ , as it should be [dn (x , 1/n) is positive

for all x ].
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